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Abstract—The paper proposes an adaptive Chebyshev method
for expediting the calculation of grounding system admittance ma-
trix. This facilitates the characterization and the inclusion of the
wideband model of the grounding systems into the time-domain
electromagnetic transient solvers. In the proposed method, a gen-
eral electromagnetic approach based on the method of moments
(MoM) solution to Maxwell’s equations is utilized to obtain the
grounding system admittance matrix over the frequency range of
interest. Rather than applying the MoM to each distinct frequency
obtained from the FFT procedure, the proposed method is utilized
to reduce the number of frequency points for which the response of
grounding system is calculated. Several simulated case studies are
presented to examine the accuracy of the proposed method. It is
shown that the selected sampling frequencies are sufficient to gen-
erate the exact response of the grounding system over the working
frequency interval

Index Terms—Chebyshev functions, grounding, lightning, state
space methods.

I. INTRODUCTION

THE inclusion of grounding system wideband model into
the electromagnetic transient solvers has attracted a great

deal of attention in recent years [1]–[4]. The relevance is mainly
due to the need for accurate calculation of lightning generated
overvoltages within the electrical networks.

As known, lightning impulse currents are characterized by
their wide frequency content in the range of zero to several
MHz over which the grounding system impedance varies as a
function of frequency. Various methods have been proposed in
the literature to implement the grounding system exact model in
the electromagnetic transient tools among which the approach
presented in [1] and [2] seems to be more general and com-
prehensive. In this approach, the grounding system admittance
matrix seen from different ports is to be accurately calculated
over the working frequency interval. To this aim, the governing
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Maxwell’s equations are solved by making use of rigorous nu-
merical methods such as the method of moments (MoM).

The application of numerical methods in the analysis of
grounding system, in particular for large grounding grids, is,
however, brute forcing and requires a huge computation time.
This is a key issue for optimal design [5] and statistical human
safety risk assessment of grounding systems [6]. Also, the inclu-
sion of grounding system exact model into the electromagnetic
transient program (EMTP)-like tools is not practical unless the
calculation of the grounding system admittance matrix becomes
sufficiently fast. This is important in the sense that the next ver-
sions of EMTP-like tools are expected to add the grounding
system calculation module to their software packages.

Within the context alluded earlier and as a continuation of
the concept developed in [1], this paper proposes an adaptive
Chebyshev method for expediting the calculation of ground-
ing system admittance matrix. In the proposed method, a gen-
eral electromagnetic approach based on the MoM solution of
Maxwell’s equations is utilized to obtain the grounding system
admittance matrix over the frequency range of interest. This is
done by applying the method of moments to the electric field in-
tegral equation (EFIE) governing the electromagnetic behavior
of the current-carrying grounding conductors. To decrease the
computation time, due to the time-consuming nature of the so-
lution in the frequency domain, an adaptive Chebyshev method
is utilized to reduce the number of frequency points. This can
remarkably decrease the time required for the calculation of the
grounding system admittance matrix.

To demonstrate the application of the proposed method in a
practical setting, we study the effect of wide band modeling of
grounding system on the transient behavior of a wind-turbine
generation system.

The rest of the paper is organized as follows. In Section II,
the Chebychev interpolation method is discussed, while the elec-
tromagnetic modeling of the grounding systems and its MoM
solution are briefly revisited in Section III. A cursory review for
the pole–residue identification of the grounding system admit-
tance matrix by making use of the matrix pencil method (MPM)
and its state-space representation is provided in Section IV. Nu-
merical results and the validation of the proposed method are
discussed in Section V.

II. CHEBYSHEV INTERPOLATION METHOD

In this section, we present a one-stage adaptive method
for interpolating the grounding system impedance matrix. The
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method will be used to speed up the MoM solution of the gov-
erning Maxwell’s equations for obtaining the grounding system
admittance matrix over the frequency range of interest (i.e.,
f0 ≤ f ≤ f1).

Knowing that the functional behavior of grounding system
harmonic impedance is continuous and sufficiently smooth over
the range of lightning frequency components [3], one can expand
it in terms of Chebyshev orthogonal basis functions as follows
[7], [8]:

Z (f ′) ∼= P (f ′) = lim
N →∞

PN (f ′) = lim
N →∞

N∑

n=0

anTn (f ′) (1)

where f ′ = (2f − f1 − f0)/(f1 − f0) is the mapped frequency
to [−1, 1], an (n = 0, . . . N) are the unknown coefficients to
be determined, Tn (f ′) is the first-kind Chebyshev basis function
of order n, and f ′ represents the frequency of interest.

By sampling P (f ′) at total of (N + 1) frequencies f ′
n

(n = 0, . . . , N), (1) can be written as an (N + 1) × (N + 1)
matrix equation with the form

AX = b (2)

where

X = [a0 a1 . . . aN ]T (3)

and

A =

⎡

⎢⎢⎢⎢⎢⎣

T0 (f ′
0) T1 (f ′

0) · · · TN (f ′
0)

T0 (f ′
1) T1 (f ′

1) · · · TN (f ′
1)

...
...

...
...

T0 (f ′
N ) T1 (f ′

N ) · · · TN (f ′
N )

⎤

⎥⎥⎥⎥⎥⎦
(4)

b =
[
Z (f ′

0) Z (f ′
1) · · · Z (f ′

N )
]T

. (5)

Equation (2) can be solved to determine the unknown coef-
ficients x using the well-known numerical techniques such as
the single value decomposition, LU decomposition, or iterative
solution techniques [9].

The main idea is to employ an adaptive method to calcu-
late as minimum number of an as possible while preserv-
ing |Z(f ′) − PN (f ′)| < ε, where P (f ′) has (N + 1) unknown
complex coefficients. A flowchart of the algorithm is shown in
Fig. 1. With reference to this figure, the first P1(f ′) and the
second P2(f ′) versions of P (f ′) are formed in the beginning of
the algorithm; P1(f ′) is determined using the first and the last
points of the interval [−1, 1], while P1(f ′) is constructed using
the aforementioned points as well as the midpoint of the interval
(f ′ = 0). The algorithm will then enter an iterative procedure,
starting with a quality check. The basic requirement of such an
adaptive model is a suitable error function. When dealing with
impedance or admittance matrices, we must be able to interpo-
late all element of the matrix simultaneously for same sampling
points to minimize the computational time. The error function
must encompass all elements of the matrices. The error function

Fig. 1. Flowchart of the proposed algorithm.

at iteration N can be expressed as

EN =

∥∥∥∥∥

M∑

m=1

∣∣Pm
N (f ′) − Pm

N −1 (f ′)
∣∣2

1 + |Pm
N (f ′)|2

∥∥∥∥∥ (6)

where ‖ · ‖ denotes the 2-norm operator, M represents the num-
ber of interpolated objects, and Pm

N (f) is the Nth degree of the
mth interpolated object.

Provided that EN is less than a prespecified value ε, the al-
gorithm stops. Otherwise, the absolute errors between various
points within the interval associated with the last two consecu-
tive versions of P (f ′) are calculated and a new sampling point
is selected at the checkpoint where the maximum absolute error
occurs. The new point will be used to form the next updated
P (f ′). This is done by first determining the closest point in
the Chebyshev–Gauss–Lobatto (CGL) quadrature sampling set
[10]. It is noted that for a given value of N, the CGL quadrature
provides a set of interpolating points xn

xn = − cos
(πn

N

)
(n = 0 : N) (7)
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Fig. 2. Thin-wire approximation for ground conductors.

that minimizes the error function.
Having found the appropriate CGL point, the new augmented

sampling set is used to update P (f ′) for the next iteration (see
Fig. 1). When calculating the error function, the CGL point is not
included in (6) to avoid unnecessary increase of E. This is due
to the fact that PN (f ′) is not necessarily required to pass the
last sampling point (f ′

N +1 , Z(f ′
N +1)).

It is worth noting that since the original function is sufficiently
smooth, the final interpolated function converges to the original
function according to the Weiestrass approximation theory [11],
eliminating the need for comparison with the original model.

III. ELECTROMAGNETIC MODEL OF GROUNDING SYSTEM

For operational and safety reasons, various apparatus in a typ-
ical power plant are connected to the grounding system, forming
a multiport network [12]. Such a linear network can be repre-
sented by an impedance matrix. To obtain the impedance matrix
over the frequency range of interest, we start by adopting the
thin-wire approximation for representing the ground conduc-
tors, as shown in Fig. 2.

Referring to Fig. 2, the total electric field Et(r) at an arbitrary
point point r̄ is the sum of the incident Ei(r̄) and scattered Es(r̄)
fields, i.e.

Et (r̄) = Ei (r̄) + Es (r̄) . (8)

Considering the vanishing condition for the tangential com-
ponent of the electric field at the surface of the conductor and
applying it to the governing EFIE, we have [13]

ât .E
i (r̄) =

jωμ

4π

∫

l

Il

(
r′

)
G (r̄, r̄′) dl (9)

where ât is the unit vector tangential to the ground conductor
path, Il(r̄′) is the unknown longitudinal current along the ground
conductor, and G(r̄, r̄′) is the dyadic Green’s function for the
electric field at point r̄ due to a current element at point r̄′.

By making use of the MoM, (9) can be solved for Il(r′)
[2], [13]. Having obtained the current distribution along the
ground conductors, one can obtain the values of the voltage and
current at the ports to form the system impedance matrix in the
frequency domain. It is worth noting that the matrix elements

are functions of the geometry of the grounding system as well
as the soil electrical properties.

IV. MATRIX PENCIL METHOD

To obtain the rational approximation of frequency domain
responses, we adopt the customized MPM described in [14]. In
this section, the method is summarized for the case of grounding
system admittance matrix.

Let y(t) represents the time domain representation of the
admittance frequency domain response of an arbitrary port of a
grounding system. The MPM is used to approximate .. as a sum
of exponentials (SoE) [14]–[16]

y (t) =
M∑

i=1

Rie
Pi t (10)

where Pi (i = 1 : M) are the complex valued poles of the sys-
tem, Ri stands for residue, and M is the number of poles. The
rational form of (10) can be derived as follows (11):

Y (s) =
M∑

i=1

Ri

s − Pi
(11)

where Y denotes the Laplace transform of y(t) and s is the
complex frequency,

For considering the mutual impedances between different
ports, all the elements of the grounding system admittance ma-
trix are stacked into a single vector, which is fitted by the MPM
generating a common set of poles (Pi) for each individual ele-
ment. A least square problem is solved to calculate the individual
residues (Ri) [15].

The grounding systems characterized in this paper constitute
an n-port linear time-invariant (LTI) system. The requirements
for physically consistent modeling for LTI systems are stability,
causality and passivity [16]. In the frequency domain, the sta-
bility of the system is guaranteed when the poles of the system
lie in the left-hand side of the imaginary axis (i.e., poles with
negative real parts) [16], [17].

The grounding system model is passive if and only if its
admittance matrix transfer function is positive real [18]. This
requires the following:

1) The admittance matrix transfer functions have no poles
with positive real parts.

2) All eigenvalues of real part G of Y matrix be positive
[19], [20].

After obtaining a passive pole–residue representation for the
frequency response of each element of the admittance ma-
trix, a time-domain representation the admittance matrix is
needed to include the frequency response of the grounding sys-
tem in EMTP-RV. The state space equations are formulated as
follows [21]:

ẋ(t) = A · x(t) + B · v(t)

i(t) = C · x(t) + D · v(t) + E · v̇(t)

A ∈ Rm×m ,B ∈ Rm×n , C ∈ Rn×m ,

D ∈ Rn×n , E ∈ Rn×n (12)
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Fig. 3. Schematic of a 20 × 20 m2 grounding grid with 4 × 4 meshes.

where x(t) is the sate vector, n denotes the number of system
ports, and m is the total number of state variables, which equals
the product of the total number of the poles and the total number
of the ports (m = M × n).

The Jordan-canonical form is chosen for time-domain realiza-
tions for the fitted admittance matrix in the form of state space
equation. The obtained state-space equations can be directly
implemented in EMTP-RV using the state space block [21].

V. RESULTS

In order to demonstrate the efficiency of the proposed method,
three different grounding systems are studied. To this aim, both
single-port and multiport grounding systems are considered. To
evaluate the effect of wideband modeling of grounding systems
on the lightning generated overvoltages, the proposed method
will be used in conjunction with the EMTP-RV simulator for
analyzing a typical wind power plant.

In all simulations presented in this section, we assume that
the grounding electrodes are assumed to be perfect electric con-
ductor which is a reasonable approximation for the working
frequencies [22]. Also, the soil is assumed to be single layer
characterized by relative permittivity of εr = 20 and conductiv-
ity of σ0 = 0.001 S/m. The simulations are carried out on an
Intel Quad core, 3632 QM at 2.2 GHz, with 6 GB of RAM.

A. One-Port Grounding Grid

First, we consider the case of a single-port grounding grid
buried in a single layer lossy soil, as shown in Fig. 3. The
grounding grid in this case is an equally spaced 20 × 20 m2

square with 4 × 4 meshes. The burial depth of the grid is h =
1 m, and the conductors have a radius of r = 15 mm.

Variations of the magnitude and phase of the harmonic
impedances of the grounding grid are shown in Fig. 4. The
harmonic impedance of the grounding grid was fitted by the
proposed method over the frequency range of 0 − 3 MHz.
It is found that only six sampling points (f = 0.1, 262,
976, 1500, 2405, and 3000 kHz). are required to achieve a
relative error of E = 0.05. The computational time decreases
from 350 s for conventional method approach to about 15 s for
the proposed method.

From this, it is clear that the Chebychev method can result
in a significant reduction in the computation time with respect
to the conventional method with the same desired accuracy.

Fig. 4. (a) Magnitude and (b) phase variations of the harmonic impedances
of the single-port grounding grid shown in Fig. 3; solid line indicates the con-
ventional method with N = 256 and dotted line indicates the proposed method
with N = 6.

Fig. 5. Progression of the absolute error (|Z(f ) − PN (f )|) of the computed
impedance of the single-port grounding system (see Fig. 3) as a function of
frequency.

As discussed earlier in this paper, it is important when the ad-
mittance matrix of a large grounding system is intended to be
implemented in the time-domain EMTP-like tools.

To demonstrate the convergence rate of the proposed method,
the absolute error between the original model Z(f) and the
interpolated models PN (f) (N = 1 : 6 ) in various iterations
are presented in Fig. 5. A study of the results in this figure
clearly shows the convergence of the proposed method.

B. Two-Port Grounding Grid

To further demonstrate the ability of the proposed method,
we consider a 60 × 60 m2 two-port grounding grid, as shown in
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Fig. 6. Schematic of a two-port 60 × 60 m2 grounding grid with 6 × 6
meshes.

Fig. 7. (a) Magnitude and (b) phase variations of the self (Z11 and Z22 )
and mutual (Z12 = Z21 ) harmonic impedances of the two-port grounding grid
shown in Fig. 6; solid line indicates the conventional method with N = 256
and dotted line indicates the proposed method with N = 7.

Fig. 6. The grid in this case study consists of 6 × 6 equally
spaced square meshes with two ports located at the corner
and the center of the grid. The grid is buried at the depth of
h = 0.5 m, and the conductors are of radius of r = 15 mm.
The soil electrical parameters are identical to the previous case.
Calculating the self- and mutual impedances of the grounding
system results in a 2 × 2 impedance matrix whose off-diagonal
elements (Z12 and Z21) are equal due to the reciprocity.

Variations of the magnitude and phase of the self (Z11 and
Z22) and mutual (Z12 = Z21) harmonic impedances of the
two-port grounding system are shown in Fig. 7. As it can
be seen in this figure, the proposed method can accurately
(E = 0.08)reconstruct the self- and mutual impedances us-
ing only seven frequencies (f = 0.1, 455, 656, 1500, 1997,
2682 and 3000 kHz) within the working frequency interval.

Fig. 8. Port numbering in the 20 × 20 m2 grounding grid shown in Fig. 3.

TABLE I
TOTAL COMPUTATION TIMES OF THE SELF- AND MUTUAL IMPEDANCES OF THE

MULTIPLE PORT GROUNDING SYSTEMS SPECIFIED IN FIGS. 3 AND 8, WITH

RELATIVE ERROR OF E ≤ 0.05

Computation Time (s)

No. of Ports No. of Sampling Points Proposed Method Conventional Method

2 7 32 706
4 8 73 1413
6 8 109 2119
8 8 145 2826
10 8 182 3532
12 8 218 4239
14 8 254 4945
16 8 290 5652
18 8 327 6359
20 9 407 7065

It is worth noting that the same sampling points are used to fit
all three self- and mutual harmonic impedances. Reducing the
number of sampling points from 256 to 7 substantially enhances
the efficiency of the computations. In fact, the computation time
decreases by a factor of 20 from 700 s to about 30 s.

C. Multiport Grounding Grid

To demonstrate how the proposed method can affect the com-
putation time in the analysis of a complex multiport grounding
system, we consider the same 20 × 20 m2 grounding grid with
several ports, as shown in Fig. 8. The analysis is repeated for
various case studies involving 2, 4, . . . 20 ports. The results are
shown in Table I where the computation times of the proposed
method for determining the self- and mutual impedances are
compared with those obtained using the conventional method.
A study of the results in this table clearly confirms the effi-
ciency of the proposed method. In fact, the computation gain
increases as the number of ports increases. For example, the
computation time difference between the two methods for the
2-port case is 674 s, whereas the proposed method requires
6658 s less time to determine the self- and mutual impedances
of the 20-port grounding system. This is mainly due to the fact
that as the number of ports increases, the number of self- and
mutual impedances also increases while the reduced number
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TABLE II
GRADE AND SPREAD VALUES COMPUTED FOR HARMONIC IMPEDANCES OF

FIGS. 4 AND 7

Harmonic
impedance

GRADEADM SPREADADM SPREADFDM GRADEFDM

Z (see Fig. 4) 1 1 2 3
Z1 1 (see Fig. 7) 1 1 2 2
Z1 2 (see Fig. 7) 2 2 3 3
Z2 2 (see Fig. 7) 1 1 2 2

TABLE III
COEFFICIENTS αi IN SMITH AND LONGMIRE MODEL FOR FREQUENCY

DEPENDENCE OF SOIL ELECTRICAL PARAMETERS [27]

i αi i αi

1 3.4 × 106 8 1.25 × 101

2 2.74 × 105 9 4.8 × 100

3 2.58 × 104 10 2.17 × 100

4 3.38 × 103 11 9.8 × 10−1

5 5.26 × 102 12 3.92 × 10−1

6 1.33 × 102 13 1.73 × 10−1

7 2.72 × 101

of frequency points required in the proposed method is almost
unchanged for various number of ports.

To evaluate how closely the conventional method and the pro-
posed method align, the feature selective validation (FSV) tech-
nique [23]–[25] is adopted; it is a simple and standard scheme
for evaluating the reliability and quality of the comparison of
two datasets. Among various figures of merit that the FSV tech-
nique offers, the amplitude difference measure (ADM) and fea-
ture difference measure (FDM) are used more commonly. They
are based on the decomposition of the original data into “high”
and “low” portions. Combinations of these portions of datasets
and their derivatives are used to compute ADM and FDM [24],
[25]. Having computed ADM and FDM, two quality factors,
namely, GRADE and SPREAD, are presented for evaluating the
quality of comparisons. The smaller the values of GRADE and
SPREAD, the better the comparison. The GRADE and SPREAD
values ranges from 1 (best quality) to 6 (worst quality).

The GRADE and SPREAD values of ADM and FDM are
computed for the self- and mutual harmonic impedances shown
in Figs. 4 and 7, respectively. A study of the results listed in Ta-
ble II confirms that the proposed method can reliably reconstruct
the harmonic impedances with a reduced number of frequency
points.

D. Calculation of Overvoltages

To demonstrate the suitability of the proposed method for
inclusion in the EMTP-RV simulator, the wideband modeling
of the grounding system of a typical wind-turbine genera-
tion system on the lightning-generated overvoltages is studied.
The grounding system admittance matrix is obtained using the
method described in Sections II and III, while the pole–residue
identification and hence the state-space model of the considered
system are obtained by the procedure described in Section IV.

Fig. 9. Schematic of a single wind turbine power plant hit by lightning.

Measurements and simulations have shown that the frequency
dependence of soil electrical parameters have considerable
effects on grounding system impedances and the consequent
transient voltages [26]. The analytical formulae, given later,
proposed by Smith and Longmire [27] with a relative permittiv-
ity of ε∞ = 20 and conductivity of σdc = 0.001 S/m are used
in this analysis

εr (f) = ε∞ +
13∑

i=1

αi

1 +
(

f
Fi

)2 (13a)

σ (f) = σdc + 2πε0

13∑

i=1

αiFi

(
f
Fi

)2

1 +
(

f
Fi

)2

[
S
m

]
(13b)

where Fi = (125σDC)0.8312 × 10i−1 and αi are given in
Table III.

The plant consists of a wind turbine, a power transformer, and
surge arresters, as shown in Fig. 9. The wind turbine encom-
passes a 2MW/690 V synchronous generator with blade down
conductors and tower lengths of 57 and 124 m, respectively.
The blade down conductors and tower are modeled as con-
stant parameter (CP) transmission lines characterized by surge
impedances of 684 and 322 Ω, respectively [28], [29]. The val-
ues of the surge impedances are calculated based on the simple
models developed for transmission lines with cylindrical geom-
etry [30]. The tower is connected to the transformer via a short
cable of length 50 m, which is modeled as a CP transmission
line in EMTP-RV having a characteristic impedance of 50 Ω.
The wind turbine generator is connected to a 20 kV distribution
line via a 0.69 kV/20 kV ynD transformer with 2.5 MVA rated
power. To model the ZnO surge arrester, the method described
in [31] is used. The tower footing, the neutral point of the trans-
former, and the arresters are connected to the grounding system.
To avoid computation of the complex transformer admittance
matrix encountered in the wideband modeling, we adopt the π-
capacitance model that consists of the transformer steady-state
model together with high-frequency coupling capacitances [32],
[33]. The values of the capacitance between the MV terminals
and ground are obtained from manufacturer’s data sheet. Re-
ferring to Fig. 9, they are CH = 0.695 nF, CL = 0.455 nF, and
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Fig. 10. Variations of the magnitudes of (a) the self- (Z11 , Z22 and Z33 )
and (b) mutual (Z12 , Z13 and Z23 ) harmonic impedances of the three-port
grounding grid shown in Fig. 3; solid line indicates soil with CPs and dashed
line indicates soil with frequency-dependent parameters.

CH−L = 0.235 nF. It has been that the use of the π-capacitance
model can provide a quite good estimation of transient voltages
transferred from the transformer LV side to its MV side [32].

The grounding system is the three-port 20 × 20 m2 ground-
ing grid specified in Fig. 3 with ports 1, 2, and 3 shown
in Fig. 8. To accurately fit the self- and mutual harmonic
impedances (E = 0.07), the proposed method required only
eight sampling points (f = 0.1, 131, 597, 1020, 1500, 1720,
2463, and 3000 kHz) with a computation time of 48 s.

To illustrate the effect of the frequency dependence of the
soil electrical parameters on the grounding system impedances,
the magnitudes of the self- and mutual harmonic impedances
for both constant and frequency-dependent soil electrical pa-
rameters are shown in Fig. 10. As it can be seen in this fig-
ure, the harmonic impedances, for both soils with constant and
frequency-dependent parameters, take different values over the
working frequency interval. As expected and in compliance with
[3], [34], the frequency dependence of soil electrical parame-
ters beneficially reduces the amplitude of the grounding system
impedances

Having obtained the impedance matrix of the grounding grid,
the admittance matrix is calculated by the inversion of the
impedance matrix. The method described in Section III is used
to infer a rational fitting of the admittance matrix elements to

Fig. 11. Excitation current wave form with a rise time of 1.2 μs and a fall
time of 77.5 μs having a peak current of 30 kA.

Fig. 12. Ground potential rise (GPR) at the wind turbine footing; solid line
indicates soil with CPs and dashed line indicates soil with frequency-dependent
soil parameters.

constitute the state-space model of the grounding grid. The
resultant frequency response of the grounding system is then
included in EMTP-RV to calculate the lightning transient over-
voltages in any location of the plant.

As for the excitation current, we consider the standard current
waveform (see Fig. 11) used in EMTP-RV for modeling the first-
stroke lightning current. Mathematically, the front shape of the
current waveform can be expressed as [35]

I (t) = At + Btn (14a)

and its tail shape can be defined as

I (t) = I1e
−( t−t n )

t 1 − I2e
−( t−t n )

t 2 (14b)

where the time constants and current constants are dully selected
to attain the typical values for waveform peak (30 kA), rise time
(1.2μs), and fall time (77.5μs).

Subject to the injection of this current to the tip of the wind
turbine tower (see Fig. 9), the overvoltages at different loca-
tions are calculated for both soil with constant and frequency
dependent parameters. The lightning generated overvoltage at
the tower footing is shown in Fig. 12 while the overvoltages at
the transformer low voltage terminal (phase a) and at its neu-
tral point are, respectively, shown in Figs. 13 and 14. From a
close examination of the results in these figures, the following
conclusions can be made:
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Fig. 13. Overvoltage at transformer low voltage terminal; solid line indi-
cates soil with CPs and dashed line indicates soil with frequency-dependent
parameters.

Fig. 14. Overvoltage at transformer neutral ground; solid line indicates soil
with CPs and dashed line indicates soil with frequency-dependent parameters.

1) The inclusion of frequency dependence of soil electrical
parameters on the grounding system modeling remarkably
reduces the generated overvoltages.

2) A comparison between the rise times of the overvoltage
waveforms shows that the inclusion of soil dispersion in
the modeling enables one to predict the dispersive effect
of wave propagation within the grounding system.

VI. CONCLUSION

An adaptive Chebyshev method has been proposed for ex-
pediting the calculation of grounding system admittance ma-
trix. This helps with the characterization and the inclusion of
the wideband model of the grounding systems into the time-
domain electromagnetic transient solvers. The main feature of
the proposed method is its ability to obtain the full response
of a grounding system over the working frequency interval by
applying the method of moments to the grounding system gov-
erning EFIE only at a few frequencies. The results of several
simulate case studies have been presented to evaluate the per-
formance of the proposed method. It has been shown that the
adaptive Chebychev method can remarkably reduce the compu-
tation time (by reducing the frequency samples) of grounding
system admittance matrix. Finally, we have used the proposed
method to study the case in which lightning strikes the tip of
a typical wind turbine tower, showing the noticeable effect of
the frequency dependence of soil electrical parameters on the
lightning-generated overvoltages.
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where he is currently an Assistant Professor. His current research interests in-
clude power system modeling and simulation, smart grids, and electromagnetic
compatibility.


