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Abstract
Purpose – This paper aims to focus on the inclusion of the frequency behavior of grounding system effect
on surge arrester (SA) model parameters’ estimation.

Design/methodology/approach – The grounding system impedance and its frequency behavior are the
factors that have influence on the SA performance. Up to now, the grounding system impedance effect and the
frequency behavior of the soil parameters have not been studied for the estimation of the parameters of the SA
frequency-dependent model. In this paper, the grounding system’s influence on the SA dynamic model has been
simulated for rod- and counterpoise-shaped electrodes. Particle swarm optimization with a grey wolf optimization
algorithm has been implemented as an optimization algorithm to adjust the parameters of the SA dynamicmodel.

Findings – The results show that the frequency behavior of the grounding impedance and soil electrical
parameters can impress the optimum parameters of the SA frequency-dependent model and should be
considered for more reliable results. Also, the results evidence that the proposed optimization method
provides more accurate results compared to other optimization methods.

Originality/value – To the best of the authors’ knowledge, this work is one of the first attempts to
investigate the effect of frequency grounding system on SA frequency-dependent model parameters.

Keywords Grounding system impedance, Surge arrester dynamic model, Residual voltage,
PSO-GWO algorithm

Paper type Research paper

1. Introduction
To improve the lightning performance of the transmission grids and failure rate
diminishing, surge arresters (SAs) have been connected to critical points such as substations
and transmission lines. SA is a device to protect electrical equipment from overvoltage
transients caused by external (lightning) or internal (switching) events; hence, physical and
electrical characteristics election of SAs and energy absorption capabilities are involved in
lightning overvoltage limitation. The accurate placement and the determination of the
electrical characteristics of the arresters organize critical issues that involve appropriate
theoretical substantiation. This is reached by implementing simulation procedures,
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precision of which depends on the used equivalent circuit models (Bedoui and Bayadi, 2019;
Jacqmaer et al., 2009; Li et al., 2021; Zhao and Magoulès, 2012; Zhou et al., 2020). Suitable
equivalent models have been represented by many researchers to compute the SA residual
voltage for fast-front current waves (Fernandez and Diaz, 2001; Pinceti and Giannettoni,
1999; Application of Surge Protective Devices Subcommittee, 2023). IEEE, Fernandez–Diaz
and Pinceti models have been widely used for SA behavior simulation. In IEEE model, two
sections of nonlinear resistances are divided by an R-L filter which has very little impedance
for slow-front surges and the two nonlinear resistances are in parallel. For fast-front surges,
the R-L filter impedance is significant and leads to a current distribution between the two
nonlinear sections (IEEEGroup, 1992).

In Fernandez–Diaz model, it should be noted that the current ratio is constant over all of
the ranges of protection characteristic voltage. With this additional constraint, the voltage
increase between the input terminals depends only on the inductance which is obtained
using the selection curves of percent increment in the residual voltage for various values of
inductance (Fernandez and Diaz, 2001). In the Pinceti model, compared to the IEEE model,
the capacitance is eliminated and there is one resistance (about 1-M) between the input
terminals to avoid numerical oscillations (Pinceti, 2014). In fact, the last two proposed
models are based on the IEEE model, with various parameter calculation processes. The
precision of each model is very extremely influenced by the parameter values adjustment.

In response to these challenges, several iteration approaches have been exploited to predict the
parameter values of the SA dynamic model (Bayadi, 2008; Christodoulou et al., 2010a, 2010b;
Christodoulou et al., 2011; Christodoulou et al., 2010a, 2010b; Lira et al., 2009; Martinez and
Durbak, 2005; Nafar et al., 2012, 2011; Sengmanivanh et al., 2021; Vahidi et al., 2008; Zeinoddini-
Meymand et al., 2013). An objective function based on the integral of squares of measured errors,
which is the error between simulated residual voltage and the obtained residual voltage from
8/20 ms impulse current, has been introduced in Lira et al. (2009). Procedures for appropriate
parameter estimation and mathematical representation have been represented in Martinez and
Durbak (2005). An optimizationmethod based on the genetic algorithm (GA) has been introduced
in Bayadi (2008) to achieve the best probable collection of parameter values for SAmodels. In this
method, the comparison of residual voltage simulated curve with an experimentally measured
voltage curve is essential. Other approaches based on Powell’s optimization or GA are
represented in Christodoulou et al. (2010a, 2010b), in which the peak of the residual voltage has
been used to yield objective function for optimization goal. GA is developed in Christodoulou et al.
(2011) andVahidi et al. (2008) to evaluate themetal oxide SA circuit model parameters.

The metal oxide SAs failure probability valuation has been introduced in Christodoulou
et al. (2010a, 2010b), which uses the equivalent circuit models. A developed optimization
technique has been used for SA parameters estimation in Nafar et al. (2011, 2012). In
addition, in these references, a comparison has been drawn among the various V-I characteristic
assigning methods of the SA. An improved self-adaptive particle swarm optimization (PSO)
algorithm has been established in Zeinoddini-Meymand et al. (2013) to estimate SA model
parameters. The best set of SA parameters have been calculated under lightning, switching and
steep-front impulses. An optimization method based on the downhill simplex method has been
introduced in Christodoulou et al. (2011). These mentioned methodologies can be proved very
valuable, for the accurate SA dynamic model plays an important role in achieving more precise
and reliable results in transient analysis and lighting performance studies.

One of the most imperative parameters which has considerable influences on lightning
overvoltages is the grounding system impedance. Up to now, the frequency behavior of the
grounding systems has not been considered in the dynamic model of the SA to estimate
parameter values of the SA. As the real ground connection has a significant resistance

COMPEL



(Christodoulou et al., 2014; Khodsuz, 2022; Sajadi et al., 2020; Shariatinasab et al., 2017;
Shariatinasab and Gholinezhad, 2017), the appropriate modeling of an SA is significant. It is
obvious that the use of the optimum parameter values in the equivalent circuit models
reduces the error between the manufacturer’s and the simulated residual voltage significantly,
something which is really very important because the arresters models can be more reliable for
the insulation coordination studies representing more efficiently the arresters’ behavior and
resulting in more precise analysis. Within the context alluded above, the inclusion of frequency
model of grounding system for the SA parameters should be considered. The method of
moments (MoM) can be used as an effective method to solve the electric field integral equation.
This method governs the current distribution along grounding system conductors. TheMoM is
a rigorous, full-wave numerical technique for solving open-boundary electromagnetic
problems. Using this technique, you can analyze electromagnetic radiation, scattering and
wave propagation problems with relatively short computation times and modest computing
resources (Sheshyekani et al., 2014).

This paper aims to evaluate the grounding system impedance effect on the
estimation of SA model parameters. To assess the SA model parameters, the transient
models of SA with and without considering grounding system impedance have been
simulated using MATLAB software. The simulations of the SA dynamic model have
been linked to a developed program that is based on particle swarm optimization with a
grey wolf optimization (PSO-GWO) algorithm. Parameter determination of different SA
models has been performed for ideal and frequency-dependent grounding system
models. The grounding system has been simulated for different soil resistivities and
also for various grounding electrodes including rod and counterpoise. The validity and
accuracy of estimated parameters have been evaluated by comparing the simulated
residual voltage and the manufacture’s values. The relative error values for the IEEE,
Pinceti and Fernandez models have been diminished after optimization compared to
their initial values for all simulated grounding systems. The results show that the
frequency behavior of the grounding system affects the calculated optimum values of
the SA parameters. Consequently, the SA parameters have been calculated more
accurately when the frequency behavior of the grounding system is considered in the
dynamic model. In addition, the optimized parameters are different for counterpoise-
shaped and rod-shaped grounding system which shows the effect of the grounding
system type on the SA optimized parameters.

2. Modeling the grounding system and metal oxide surge arrester
In this section, the frequency-dependent model of the SA has been investigated and modeled
in MATLAB software.

2.1 Metal oxide surge arrester modeling
The SA models have been represented in the supplementary file (as Figure A). The
represented model of IEEEWorking Group 3.4.11 includes five parameters (R0, R1, L0, L1, C).
In this model, the inductance dedicated to magnetic fields in the surrounding of the SA has
been modeled as the inductance L0. To stabilize the numerical integration, R0 has been used
during the IEEE model implementation on a computer program. In this model, the
inductance L1 and the resistance R1 comprise the filter between the two nonlinear
resistances (the nonlinear resistances A0 and A1). The arrester terminal-to-terminal
capacitance has been modeled as C in the represented model.

Simpler forms of the IEEE model have been presented by the other two models. There is
no capacitance in the Pinceti–Giannettoni model. However, this model has one resistance at
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the input terminals (Application of Surge Protective Devices Subcommittee, 2023). The
resistor R is used to avoid numerical oscillations when running the model with a digital
program. In the Fernandez–Diaz model, L0 has been neglected and L1 has been used to
separate the nonlinear resistors A0 and A1 (Fernandez and Diaz, 2001). The SA
terminal-to-terminal capacitance that has been demonstrated by C is in the arrester
model (Fernandez and Diaz, 2001). The resistor R is used to avoid numerical
oscillations.

2.2 Grounding system model
The effective circuit modeling of SAs and their parameters adjusting are critical
problems for lightning performance and insulation coordination studies. A key
objective is to provide a method for the adjustment of the parameters of the circuit
models to achieve a more precise demonstration of their dynamic behavior. The
results precision of each model is strongly dependent on its adjusted parameters. For
this, several iteration methods have been proposed to set the parameter values to
minimize the error between the simulated residual voltage and the manufacturer’s
one (Christodoulou et al., 2010a, 2010b; Christodoulou et al., 2011; Vahidi et al., 2008).
Unfortunately, the exact model of the grounding system has been disregarded in
previous researches, and the grounding system has been assumed as an ideal ground.
So, grounding system is necessary to adjust the parameters of the SAs’ circuit
models.

Rod-shape and counterpoise-shape are two grounding systems consisting of one or
several buried vertical and horizontal conductors. These two kinds of grounding systems
have been modeled in this paper. The length of the grounding rod is 6m, with a circular
cross-sectional radius of 8mm. The counterpoise is one-port 8m � 8 m, with the burial
depth and the radius of 1m and 8mm, respectively.

To solve the electric field integral equation solutions, the moment’s method is used
in the frequency domain. For this purpose, the grounding system is estimated to thin
wires that are divided into small segments. To calculate the longitudinal current
distribution, the tangential electric field is calculated on each section surface due to
each current sample placed in the conductor’s axis. This current can be estimated to a
constant value, piecewise sinusoidal or a ramp function. The current distribution along
grounding conductors and the electric field within the solution domain are calculated
by the electric field integral equation solving. The voltage rise at the excitation port can
be then easily obtained as a line integration over the electric field along a prespecified
path. Finally, the system impedance is formed by the voltage and current values
(Sheshyekani et al., 2014; Visacro et al., 2011). After that, to get a transfer function of a
certain order, vector fitting is applied to approximate the frequency response. It is able
to identify the state space models directly from the frequency domain responses of any
single or multiple input–output systems. The system transfer function can be
represented as the sum of partial fractions that each one can be modeled as a branch
circuit with a specific admittance value. Finally, the synthesized circuit is made by the
parallel-connected branches.

Owing to this fact, the soil conductivity and relative permittivity show a frequency-
dependent behavior over the frequency range. Because all the computation in the
moment’s method are performed in the frequency domain, the frequency dependency of
the soil parameters is easily inserted in the calculation. As shown in equation (1), the
model proposed by Longmire and Smith (1975) is used to model frequency-dependent
soil electrical parameters:
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where f is the frequency ranging from dc to 2MHz; «r(f) and r(f) are the relative permittivity
and soil resistivity, respectively; r0 is the low-frequency resistivity; p is the water percentage
of soil; and an are coefficients (Longmire and Smith, 1975). It should be noted that the
calculation has been done for soil resistivities 100, 250, 500, 1000 and 3000Xm. These three
values correspond to water percentages p = 11.6%, p = 2.77%, p = 0.767%, p = 0.213% and
p = 0.028%. In all cases, the «1 is considered 5. The synthesized circuit and the impedance
amplitudes for rod grounding system topologies and different soil resistivities are shown in
Figure 1 (counterpoise-shaped circuit has been shown as Figure B in the supplementary file).

3. Formulation of the optimization problem
There are different parameters in the three considered models due to which their quantity may
have different values. Five parameters exist in the IEEE model (R0, R1, L0, L1, C), and the
Pinceti-Gianettoni model and the Fernandes–Diaz model have three parameters (R0, L0, L1) and
(R0, L0, C), respectively. The minimization of the relative error has been proposed as an
objective function.

The parameters (R, L, C) of each model form a column vector as follows:

x ¼ ½x1; x2; x3; x4; x5�T ¼ ½R0; R1; L0; L1; C�T
IEEEmodelð Þ
x ¼ ½x1; x2; x3�T ¼ ½R0; L0; L1�T
Pinceti� Gianettonimodelð Þ (2)

x ¼ ½x1; x2; x3�T ¼ ½R0;L0;C�T
Fernandes�Diazmodelð Þ

The optimal values xi will be found by applying an optimization algorithm. Minimizing the
relative error is the optimization goal which has been calculated as follows:

e ¼
����Vs � Vm

Vm

���� (3)

whereVs is the simulated residual voltage peak value andVm is the measured one.
The behavior of individuals of bird swarms is the basis of the PSO algorithm. An

individual in the swarm tries to approach the optimum through its present velocity,
previous experience and the experience of its neighbors or an entire population. These
particles are moved around in the search space according to their present velocity, previous
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experience and the experience of their neighbors. When improved positions are being
discovered, these will then come to guide the movements of the swarm. PSO algorithm
permits swarms to profit from their previous experiences, and it is an interesting feature of
PSO (Gaing, 2003; Longmire and Smith, 1975; Niknam et al., 2010).

This method has many advantages including simple implementation and adjusting a few
parameters. However, this algorithm may trap into a local minimum. Recently, numerous
techniques have been reported to overcome this disadvantage by using the hybridization of PSO
with other global optimization algorithms (Esmin et al., 2005; Pal et al., 2016; Rokbani et al., 2013).
Esmin et al. (2005) introduced a new hybrid algorithm called PSO-GWO by combining the PSOs
utilization ability with GWO’s exploration capability. A hybrid approach has been formulated by
combining PSO and GWO algorithms that produce effective and fruitful results. Therefore, in
this paper, the hybrid technique of PSO-GWOhas been used to generate the best solutions.

Figure 1.
Rod grounding
systemmodel

(a) (b)

(c) (d)

(e)

(f)

Notes: (a) ρ = 100 Ω m; (b) ρ = 250 Ω m; (c) ρ = 500 Ω m; (d) ρ = 1000 Ω m; 
(e) ρ = 3000 Ω m; (f) self-impedances of the vertical rod
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3.1 Particle swarm optimization
In the PSO method, particle swarms have the absolute authority to transfer in a
multidimensional search space, and the velocity of each particle has been updated as follows
(Gaing, 2003; Niknam et al., 2010):

vikþ1 ¼ vvik þ c1rand1 p
k

i;pbest � xki
� �

þ c2rand2 p
k

i;gbest � xki
� �

(4)

wherev is the inertia weight varying in the range of 0.4 to 0.9. c1 and c2 are acceleration factors
and rand1 and rand2 are random parameters that vary between [0,1]. pi,pbest is the best previous
experience of the ith swarm particle, and the best experience between the total population has
been shown as pi,gbest. The swarm location updating process is according to equation (5):

xkþ1
i ¼ xki þ vikþ1 (5)

3.2 Grey wolf optimization
The GWO is a technique based on swarm intelligence which is influenced by the social
behavior of grey wolves and based on their hunting strategy. GWO is categorized into four
types of wolves. An alpha wolf has a major role in generating new solutions. The second and
third levels near alpha wolves have been called beta and delta wolves. The beta wolves
guide the leader wolves to make decisions. Response to the alpha has been performed by the
delta wolves. Finally, the lowest ranking of wolves has been introduced as omega wolves
(Faris et al., 2018; Mahapatra et al., 2019; Mirjalili et al., 2014).

The hunting pattern of grey wolves contains three steps:
(1) approaching prey hounding;
(2) aggressively surrounding the prey until it stops moving; and
(3) attacking the prey.

To mathematically model the behavior of surrounded prey, the following equations are
proposed:

D ¼ jC:XP tð Þ � X tð Þj
X t þ 1ð Þ ¼ jXP tð Þ � A:Dj (6)

where t is the iterations’ number, the prey positions have been shown by XP and X is the
gray wolf location.A and C are the coefficient vectors given as follows:

A ¼ x 2r1 � 1ð Þ
C ¼ 2r2

(7)

With iterations increasing, the value of x decreases linearly from 2 to 0. The parameters r1
and r2 are random numbers in the range of [0, 1]. The updating equation consists of the
movement of other wolves in accordance with the three best wolves’ position as given by:

Da ¼ jC1Xa � Xj
Db ¼ jC2Xb � Xj
Dd ¼ jC3Xd � Xj

(8)
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where Da, Db and Dd are the adapted distance between the alpha, beta and delta positions to
the other wolves. C1, C2 and C3 are the coefficient factors which are represented in equation (4).
If the best values in each iteration were X1, X2 and X3, then the updated prey position would be
calculated based on the mean position as given below:

X1 ¼ jXa � a1Daj
X2 ¼ jXb � a2Dbj
X3 ¼ jXd � a3Ddj

X t þ 1ð Þ ¼ X1 þ X2 þ X3

3

(9)

3.3 Particle swarm optimization–grey wolf optimization
The PSO-GWO algorithm has been developed without changing the general operation of the PSO
and GWO algorithms. GWO and PSO hybridization integrates the investigation ability of GWO
into PSO, and better-produced positions can bemade for particles. On the other hand, GWO keeps
an equilibrium between investigation and utilization and employs to support the PSO algorithm to
diminish the possibility of falling into a local trapping. The investigation capability of the GWO
algorithm is used to avoid these risks by leading some particles to positions that are partially
improved by the GWO technique instead of directing them to random positions. Thus, hybrid
PSO-GWO uses both the advantages of PSO and GWO algorithms. By the PSO-GWO
implementation, the solution time may increase, but the developed and improved global searching
capability of the hybrid method covers the extended time and consequently improves the
convergence. The pseudocode of PSO-GWOalgorithm is as follows:

1: Imaxiter the number of maximum iterations set by the user
2: Imaxpso the number of maximum PSO iterations set by the user

3: PS: the number of population sizes set by the user
4: procedure PSO-GWO

5: Initialize particles
6: for i = 1 to Imaxpso do

7: for j = 1 to PS do
8: Run standard PSO

9: Update the velocity and the position of current particle
10: if Ipso = Imaxpso then

11: Set x, A, C values
12: Run standard GWO

13: Update the position of a, b,d wolves
14: Update x, A, C values

15: position of current particle = mean of the positions of three
best wolves

16: end if
17: end for
18: end for

19: end procedure

4. Proposed method
The frequency-dependent model of the grounding system has been taken into account to predict
the arrester residual voltage under injected current impulse. The flowchart of the PSO-GWO
algorithm has been shown in Figure 2. As shown in Figure 2, during optimization, the peak value
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of the SA residual voltage has been calculated by the simulated model in MATLAB software for
each model of the SA (Simulink section), and then it has been transferred to the PSO-GWO
program for the objective function evaluation. This process continues to find the optimum values
of each model parameter. The objective function has been proposed based on the error
minimization between simulated residual voltage and the manufacture’s value. The objective
function has been represented as follows:

Objective Function ¼
����Vs � Vm

Vm

���� (10)

whereVs andVm are the simulated andmeasured residual voltage peak values, respectively.

5. Simulation results
A 150 kV SA simulation has been done using the MATLAB software based on the three SA
models. The information of the studied SA has been given in Table 1. Table 2 represents the
computed primary values of SA model parameters for 10 kA 8/20 ms injected current. These
parameters have been calculated according to the equation mentioned in Fernandez and
Diaz (2001), Pinceti and Giannettoni (1999) and Application of Surge Protective Devices
Subcommittee (2023).

Figure 2.
The surge arrester
frequency model

optimization
flowchart based on

PSO-GWO algorithm

Start

Set PSO Parameters including 
initial parameters, 

Imaxiter,Imaxpso and population 
size 

Run simulation and SA 
residual voltage  calculation

Update velocity and 
positionIs Ipso<ImaxpsoSet A,C and x

Is stopping criteria 
reached?

Calculation initial Pbest and 
Gbest 

Yes

No

Yes

No

objective function 
calculation in optimization 

algorithm

Evaluate the 
fitness of all 

wolves

Calculate the best 
three wolves

Update the 
grey wolves 

positions

Is max iteration 
reach?

End

Yes

No
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The best-obtained solutions by the objective function optimization and for 100X m soil
resistivities have been summarized in Table 3. The obtained results for 250, 500, 1000 and
3000X m have been represented in the supplementary file (see Table 3-a, Table 3-b, Table 3-c
and Table 3-d). The best solutions have been achieved after 200 independent runs for the three
SA models. The simulation has been done for three kinds of ground systems including ideal
grounding system, rod-shaped and counterpoise-shaped systems and different soil resistivities.
As can be seen, optimum parameter values are different from the initial values that are shown
in Table 2. The optimum values have been calculated based on the error minimization between
the datasheet and the simulated residual voltage for all considered grounding systems (ideal,
counterpoise and rod). It is obvious that the considering grounding system model affects the
computed optimal parameter values.

Also, it is obvious that soil with different resistivities influences the optimized
parameters which shows the effect of soil resistivity on the SA model parameters. Although
the effect of the grounding system on the SA performances may differ and sometimes the
counterpoise systemmay be better than a single rod, or vice versa, but the important issue is
that if an SA is installed in a power system for insulation coordination studies, the SA
parameters should be optimized according to the considered ground system in the studied
system. In this case, the surge residual voltage is matched with the manufacture reported

Table 2.
SA model parameters
primary values

Parameters IEEE Pinceti-Giannettoni Fernandez–Diaz

L1 (mH) 19.95 3.21 0.48
R1 (X) 86.45 – –
L0 (mH) 0.267 1.07 –
R0 (X) 133 1000000 1000000
C (pF) 75.2 – 75.18

Table 1.
SA electrical and
insulation
information

Maximum continuous operating voltage 120 kV

Rated voltage 150 kV
Maximum residual voltage with lightning current 8/20 ms 5 kA 367 kV

10 kA 396 kV
20 kA 449 kV

Maximum residual voltage with lightning current 1/20 ms 10 kA 430 kV
Height 1330mm
Creepage distance 3320mm

Table 3.
Optimum values of
SA model parameters
after objective
function
minimization
(r = 100Xm)

Model IEEE Pinceti–Giannettoni Fernandez–Diaz

Parameters
Ideal
ground Counterpoise Rod

Ideal
ground Counterpoise Rod

Ideal
ground Counterpoise Rod

L1 (mH) 16.25 17.49 18.25 8 5 2.25 0.1 0.09 0.2
R1 (X) 72.36 59.69 55.82 – – – – – –
L0 (mH) 0.252 0.233 0.1304 0.3 2.94 2 – – –
R0 (X) 142.8 107.2 133 1000000 1031000 1045700 800000 700000 700000
C (pF) 73.22 75.9 78.2 – – – 30 20 40
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residual voltage, resulting in a more reliable SA model. To show the grounding system
effect on the SA residual voltage, the simulated residual voltage of optimized and
nonoptimized model is shown in Figure 3. In these conditions, 5 kA 8/20 ms lightning
current has been applied to SA IEEEmodel. The soil resistivity has been elected 500Xm for
rod grounding system. As shown in Figure 3, considering grounding system impedance
influences the residual voltage, and the optimum values of the SA model parameters lead to
more precise results. The simulated residual voltage for optimized SA model has less
difference compared to simulation one.

The simulated residual voltage curves for rod and counterpoise grounding system
and for optimized SA model are shown in Figure 4. In this condition, 10 kA 8/20 ms
lightning current has been applied to the IEEE model of SA, and the soil resistivity
has been chosen 500, 1000 and 3000X m. The measured residual voltage for 10 kA 8/
20 ms lightning surge has been shown in Figure 5. The residual voltage measuring
has been carried out in the laboratory with the ground system including the rod with
the length of the 6 m and 8 mm circular cross-sectional radius. In addition, the soil
resistivity was 100X m. To validate the simulation, simulated surge residual voltage
for rod grounding system and 100X m resistivity has been shown in Figure 5. As
shown in Figure 5, simulated residual voltage and measured one are matched for
optimum SA frequency model.

In addition, comparing Figures 4 and 5 shows that the obtained residual voltage has
good agreement with the measured signal, and the optimization process was able to predict
SA frequency model parameters with acceptable accuracy. The residual voltage peak values
for rod grounding system are 396, 402 and 404 kV for 500, 1000 and 3000X m, respectively.
These values for counterpoise grounding system are 397, 398 and 400 kV for 500, 1000 and
3000X m, respectively. As shown in this figure, the grounding system type can affect the
residual voltage amplitude, and it is better to consider the grounding system impedance
during SAmodeling.

Figure 6 shows the PSO-GWO algorithm convergence diagram for the three studied
models’ best solution for 10 kA, 8/20 ms injected current and counterpoise system. In this
figure, soil resistivity is 100X m. The initial values of peak residual voltage which have
been obtained by the represented parameters in Table 2 have been shown in Table 4 for soil
resistivity 100X m. The obtained results for other soil resistivity have been represented in
the supplementary file (see Table 4-a to Table 4-d).

Figure 3.
The simulated

residual voltage of
optimized and

nonoptimized surge
arrester model
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Figure 4.
Surge arrester
residual voltage for
rod and counterpoise
grounding systems

(a)

(b)

Notes: (a) Rod; (b) counterpoise

Figure 5.
Surge arrester
measured and
simulated residual
voltage curves
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As can be seen in Table 4, the residual voltage peak values are different for the current
values of 5, 10 and 20 kV. The presented results show that the grounding frequency-
dependent model can change the residual voltage compared to the ideal ground condition.
Based on the obtained results from Table 4, for the ideal ground system, the relative errors
maximum value of the IEEE model occurs in 10 kA, 1/20 ms lightning impulse current
which is equal to 6.1%. This error for the Pinceti model is 6.4% and has been happened in
20 kA, 8/20 ms. Moreover, this value for the Fernandez model takes place in 5 kA lightning
impulse current, and it is equal to 8.17%. For the rod-shape and the counterpoise-shape, the
Fernandez model has the lowest relative error for 5 kA, 8/20 ms and 10 kA, 8/20 ms current
waveforms, in which the finest (lowest) relative error for 10 kA, 1/20 ms and 20 kA, 8/20 ms
has been obtained by the Pinceti model. In addition, the IEEE model has the worst
performance in terms of minimum andmaximum amplitudes of relative error.

Based on the obtained results from Supplementary Table 4-a, for the soil resistivity
250X m, the relative errors maximum value of the IEEE model occurs in 5 kA, 8/20 ms
lightning impulse current which is equal to 15.3%. This error for the Pinceti model is 8.14%
and has been occurred in 10 kA, 1/20 ms. Moreover, this value for the Fernandez model takes

Figure 6.
The PSO-GWO

algorithm
convergence diagram

(a) (b) 

(c)

Notes: (a) Ideal ground; (b) counterpoise; (c) rod (ρ = 100 Ω m)
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place in 5 kA lightning impulse current, and it is equal to 13.9%. Based on the reported
results in Supplementary Table 4-b, for the soil resistivity 500X m, the maximum error
values of the IEEE model, Pinceti model and Fernandez model are equal to 19.2, 13.76 and
15.2%, respectively.

Based on the obtained results from Supplementary Table 4-c, the maximum error value for
the IEEE model is 9.3% and has been happened in 10kA, 1/20 ms. Moreover, this value for the
Fernandez model takes place in 20kA lightning impulse current and it is equal to�9.1%. The
highest error for Pinceti is 9.06%. As shown in Supplementary Table 4-d, the IEEE model has
the maximum error value compared to two other models. This error takes place for 20 kA, 8/20
ms and the amplitude is 14.25%.

The peak residual voltage optimum values based on the optimized parameters,
which have been given in Table 3, have been represented in Table 5. As shown in
Table 5, for soil resistivity 100Xm (compared to results in Table 3), the better results
for lightning impulse currents (8/20-ms waveform) and steep front surge (1/2-ms
waveform) have been achieved after the optimization process. The best relative error
values for the injected transient current have been obtained by the Pinceti model for
all represent grounding systems. For lightning impulse current, the IEEE model has
the best result and the lowest relative error values compared to the Fernandez and
Pinceti models.

The IEEE model parameters optimization reduces the maximum error of the
residual voltage by about 5.5% compared to the initial value for the ideal ground. The
error reductions for the rod and the counterpoise systems are 10% and 8.1% compared
to initial values, respectively. Comparison of the Pinceti model parameters maximum
error before and after optimization shows that the maximum error has been reduced by
7.2% for the ideal ground. The error reduction for the rod and the counterpoise systems
is 4.7% and 5%, respectively. Under such conditions, the error reductions are 7.6%,
10.6% and 9.5% for the ideal, rod and the counterpoise grounds in the Fernandez
model.

The obtained result for other soil resistivities has been represented in the
supplementary file (see Table 5-a to Table 5-d). Comparing the represented results of
Table 5-a to Table 5-d with Table 4-a to Table 4-d shows that the obtained errors have
been improved for the different considered soil resistivities. These results indicate that
the grounding impedance should be modeled for the dynamic model parameters
computation. It leads to fewer errors and more accurate results. Results show that the
grounding system frequency behavior has effects on the SA optimum values
parameter. This shows the importance of a frequency-dependent model representation
for SA parameters estimation.

To compare the efficiency of the PSO-GWO, the obtained results for 10 kA, 8/20 ms
have been compared to the other optimization techniques results. It should be noted
that all investigations, in previous researches, have been performed for an ideal
grounding system, and the grounding system resistance effect has not been
investigated in previous literatures. The best-estimated parameters for the IEEE model
and soil resistivity 100Xm have been listed in Table 6. It should be mentioned that GA
is an effective technique for optimization problems. The concept is easy to understand,
but GA is a time-consuming method.

In accordance with above explanation and as shown in Table 6, the PSO-GWO algorithm
has predicted the estimated parameters more accurately than the other algorithms. The lowest
error for the residual voltage amplitude of the SA model has been achieved by PSO-GWO
algorithm. Besides, the modified PSO had the best results compared to the genetic and the PSO
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techniques. The comparative performances of the studied algorithms for the minimum and
maximum repetitions and simulation times have been summarized in Table 7.

As shown in Table 7, it is obvious that PSO-GWO is able to solve a proposed problem
with lower errors, the most of the time as compared to the PSO and GA. To show the
convergence ability of the PSO-GWO, the convergence performances of these algorithms
have been compared together, and the achieved results have been represented in Figure 7.
On the basis of obtained results and convergence performance of the variants, it is
concluded that PSO-GWO is more reliable in giving superior quality results with reasonable
iterations and avoids premature convergence of the search process to local optimal point and
provides superior exploration of the search course.

6. Conclusions
This paper focuses on the inclusion of the frequency behavior of grounding system
effect on SA model parameters estimation. SA modeling was performed both for the
ideal grounding system and frequency-dependent grounding system and for various
soil resistivities. A PSO-GWO algorithm was developed to determine the parameters of
metal oxide SA model, including the IEEE, Pinceti–Giannettoni and Fernandez–Diaz.
The results show that the frequency behavior of the grounding system affects the
optimum values of the SA parameters. Depending on the grounding system types and
soil resistivity, different parameter values for SA dynamic model have been acquired.
Consequently, the SA parameters have been calculated more accurately when the
frequency behavior of the grounding system is considered in the dynamic model. This
is an important issue especially for insulation coordination studies. Finally, to compare
the efficiency of the PSO-GWO, the obtained results based on the optimization method

Table 7.
Comparative
performances of
PSO-GWO and PSO
algorithms for IEEE
model

Algorithm
Run
no.

Error
average

Error
variance

Minimum
error

Maximum
error

Simulation
time (min)

PSO-GWO 50 0.0092 8.1e-5 1.85e-6 0.09 2.54
Modified
PSO 50 0.046 1.98 0.00886 0.12 2.38
PSO 50 0.055 2.05 0.014 0.143 1.55
GA 50 0.059 2.31 0.016 0.156 1.46

Figure 7.
Convergence curve of
studied optimization
algorithms for IEEE
model
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have been compared to the other optimization techniques. The results showed that the
proposed optimization algorithm achieved the lowest error, which is better than the one
provided by other investigated algorithms.
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