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Detection and severity identification of mechanical and electrical faults by means of noninvasive methods such as electrical
signatures of induction machine have attracted much attention in recent years. Since operating conditions of machines and
severity of faults in incipient stages influence the amplitude of fault index in the fault detection process, diagnosing fault oc-
currence and severity can be more complicated. In this study, an efficient method for fault detection and classification in induction
machine based on deep neural networks is introduced. 'e introduced method applies the long short-term memory (LSTM) and
fully convolutional neural networks (FCNs) in a conjoined manner. 'e authors use the FCN architecture for feature extraction
from the time-series signal and augment it with LSTM to improve classification performance. 'is structure has not been
previously applied for fault severity detection in induction machine systems. 'e authors avoid manual feature engineering and,
by eliminating the preprocessing phase, directly use time series of electrical signals for fault detection and classifications. 'e
experimental results have been carried out in different fault severities and loads. 'e analysis of the results and comparison with
other deep and classical methods show that the faulty cases can be separated based on severity and load levels with a high accuracy
(98.92%), which shows that the adopted architecture is successful in automatically extracting discriminative features from
the signal.

1. Introduction

'ree-phase wound rotor induction machines (WRIMs) are
widely used in industrial applications such as medium-
power wind turbine and electrical motors [1, 2]. However,
their performances are limited due to mechanical and
electrical faults, which lead to catastrophic disaster in sen-
sitive applications [3]. In this regard, different condition
monitoring techniques have been presented to reduce
maintenance cost and downtime of such systems [4, 5].

Two different approaches are considered for fault di-
agnosis in electrical machine, namely the model-based and
signal-based methods. Due to some restrictions and un-
certainty, the model-based approach cannot be an appro-
priate method for the fault detection process. 'erefore, the
data-driven methods, which consider measured signals such
as vibration, acoustics, voltage, and current, are more likely

to be considered for the fault detection process [6, 7]. Since
some of these signals such as vibration and acoustics have an
invasive nature, motor current signature analysis (MCSA) is
considered for this purpose. Recently, the MCSA methods
are widely used for condition monitoring of electrical and
mechanical faults in electrical machine. MCSA methods are
well developed to show the effects of faults in electrical
signatures properly. However, in the initial stages of elec-
trical and mechanical faults and different load levels, the
extracted features used for signal processing techniques such
as time domain, frequency domain, and time scale cannot
show the severity of fault properly [8]. Fault detection and
severity identification based on machine learning methods
have recently been introduced [9]. 'ese data-driven ap-
proaches can be regarded as time-series classification (TSC)
tasks. 'e major problem in the fault detection process is
related to the interclass variability caused by the different
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unknown load levels and severity of faults, which reduces the
accuracy of the process [9].

Different approaches to TSC exist. 'e methods such as
the K-nearest neighbors with different distance metrics such
as dynamic time warping [10] can classify multivariate time
series [11]. In addition to distance-based metrics, other tra-
ditional feature-based algorithms such as naive logistic (NL)
model [12] are also used.'ese algorithms strongly rely on the
extracted features [13]. 'e feature-based learning methods
utilize signal processing algorithms to extract features from
the input signals, and consequently, the severity in different
load levels is diagnosed by the classification of the extracted
features [9]. Different signal processing methods based on
frequency-domain, time-domain, and time-scale methods are
used for the signal processing step. Nevertheless, capturing
the intrinsic features of time-series data is challenging.
Conditional random fields (CRFs) are also high-level feature-
based temporal classifiers, which make prediction at a time
step as a function of the prediction at the previous time step.
CRFs oversimplify the temporal dynamics of complex actions
[14]. Other variants such as hidden-state CRFs [15] require
large number of latent states, which may lead to data
overfitting.

Recently, deep learning (DL) is increasingly used to
automatically learn complex data representations from raw
signals using a network of different abstraction levels
[16, 17]. However, the capability of these algorithms in TSC
is still understudied [18]. In contrast to the conventional
machine learning methods, DL has higher performance in
case of feature extraction, diagnostic performances, and
transferability [19]. CNNs [20], auto-encoders [21], deep
belief networks (DBNs) [22], recurrent neural networks
(RNNs) [23], generative adversarial networks (GANs) [24],
and other variants [25–27] are among most used DL ar-
chitectures for machine health monitoring. Zhao et al. [28]
present a comparison of different intelligent fault diagnostic
systems including traditional ML algorithms and deep ar-
chitectures. Convolutional neural networks (CNNs) are a
popular deep architecture capable of extracting features at
different abstraction levels [29].

Several studies use CNNs and their variations for the fault
diagnosis, regularly using up to four layers of convolution and
pooling. Typically, different preprocessing steps in the time
and frequency domains are applied to the input signal of the
deep network, to convert the input signal to a two-dimen-
sional format. Lu et al. [30] adopt a four-layer CNN structure
for fault classification. Chen et al. [20] preprocess the vi-
bration signals using different statistical measures in the time
domain. Moreover, by use of FFT, the multiband spectrum is
obtained, further calculating the root-mean-square (RMS)
value to maintain the energy shape at the spectrum peaks.'e
preprocessed signal is then classified using a CNN archi-
tecture. Zhang et al. [31] transform data into spectrograms
and use a deep fully convolutional neural network with four
convolution-pooling layer pairs. Wen et al. [32] convert
signals into two-dimensional images and apply CNN based
on LeNet-5 for fault diagnosis. 'eir architecture has two
alternating convolutional-pooling layers and two fully con-
nected layers, and padding is used to adapt the size of features.

Zhang et al. [33] use a very deep CNN of 14 layers to perform
in noisy environments. Nevertheless, this architecture can
increase the risk of overfitting.

Eliminating the preprocessing steps (conversion of data
to a two-dimensional signal) can simplify the diagnostic
process. Qian et al. use an adaptive overlapping CNN, which
directly processes the raw vibration signal and avoids the
shift variant property of the signals [34]. Similarly, Eren et al.
use an adaptive one-dimensional CNN classifier for bearing
fault diagnosis [35].

Among the deep structures, recurrent neural networks
(RNNs) are most popular for TSC [36]. RNN variations,
including long short-term memory (LSTM) and gated re-
current units (GRUs), model hidden temporal states via
internal gating mechanisms. In such networks, the predic-
tions are a function of a set of latent states at each time step.
A recent deep structure used for TSC is fully convolutional
networks (FCNs) [14–16]. FCN does not require heavy data
preprocessing or feature engineering. It has shown superior
performance in classifying time-series data [36].

In this study, a newmethod for fault detection of induction
machine by means of electrical signatures is presented using
classification of time-series signals. 'e proposed method is
novel from different aspects. First, the authors use the recent
FCN architecture for feature extraction from time-series signal.
To the best of our knowledge, the use of temporal convolutions
as feature extractors in a FCN is not previously studied for
diagnosing fault severity in induction machine systems. Sec-
ond, the authors augment the FCN architecture using the
LSTM network, which is popular for TSC. 'e combined
architecture is adopted for unbalanced winding fault (UWF)
detection and severity classification in the rotor windings of
WRIG in different load levels by means of stator current
signature. In comparison with traditional fault detection ap-
proaches, the proposed method minimizes the need for expert
supervision. 'ird, in contrast to some previous studies
[37–41], our proposed method eliminates the preprocessing
phase and directly uses time series of electrical signals for fault
detection and classifications. As a result, the proposed method
has less complexity and can automatically detect the dis-
criminative features for fault detection and classification. Two
WRIMs with the same rating values are used for the validation
of proposed method. 'e authors train the models using only
the data of the first machine, while the data of the second
machine are used for the testing process. 'e results show that
the faulty cases can be separated based on severity and load
levels with a high accuracy (98.92%), and the proposedmethod
can outperform other compared approaches.

'e rest of this study is organized as follows: the de-
scription of test rig is described in Section 2. Background
works and proposed time-series methods are explained in
Sections 3 and 4, respectively. Finally, the conclusion section
is given in Section 5.

2. Test-Rig Description

To testify the impacts of faults in the rotor windings of
electrical machine, 250W, 50Hz, 400V, 4 poles, and
1360 rpm WRIM has been used for this purpose. 'e stator
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windings are connected to the three-phase supply system
through an autotransformer. 'e windings of rotor are
connected as star structure, and one phase of winding is
unbalanced by means of additional resistance. 'e severity
of fault can be changed through variable resistance. 'e
schematic of experimental setup and the test bench is shown
in Figure 1. Since the impacts of UWF in the rotor windings
of WRIG can be tracked through stator current signatures,
the stator current of one phase is measured through the
current sensor. 'e effects of UWF in the rotor windings of
WRIM in the frequency domain of stator current are named
as fault index (fi) and can be observed as additive frequencies
around the supply frequency (fs) (equation (1), Figure 2(a)
and 2(b)) [1].

(1 ± 2ks)fs, k � 1, 2, 3, . . . , (s: slip). (1)

To show the effects of load levels on stator current
signature, primemover is linked toWRIG through coupling.
'e prime mover is responsible to rotate WRIG at different
rotational speeds. In this regard, in different load levels and
fault severities in healthy and faulty conditions, stator
current signature has been observed. In the incipient stage of
faulty case and low load levels, diagnosing fault can be more
difficult in comparison with other cases and does not have
specific rhythm in comparison with variation of slips
(Figure 2(c)). 'erefore, 12 different classes have been
considered for this purpose. Each class can be identified
based on fault severity (resistance unbalance (Runb)) and
load level (s: slip). Table 1 shows these 12 classes (A1, . . .,A12)
and are considered for the fault detection process. 'e data
have been collected at three different speeds and three ex-
ternal resistances with different amplitudes.

'e amplitudes of external resistance are normalized to
the rotor resistance. It can be easily found out that this
amplitude covers an extensive range of fault severity from
very low unbalance fault (Runb � 0.029 p.u.) to higher values.
It is necessary to note that the collected data in healthy
conditions are shown in Table 1 as Runb � 0 (A1, A2, A3). 'e
plots for healthy and faulty cases (Runb � 0) and their
spectrums are now included in Figure 2, and comments are
added to the manuscript text. It is evident that the amplitude
of faults in the case of healthy conditions has lower am-
plitude in comparison with faulty ones (−54 dB)
(Figure 2(d)). It is necessary to note that the fault charac-
teristic frequency in the case of healthy condition cannot be
detected clearly in the spectrum of stator current and the
amplitude modulation can be found out in the stator current
of machine (Figures 2(e) and 2(f)).

All collected data are derived with 2k sampling fre-
quency. Each class, Ai (i� 1, . . ., 12), has 45 saved data with
12.5 s time duration with the sampling frequency of 2k. Two
WRIMs with the same rating values are used for the vali-
dation of proposed method. In this regard, the authors train
the models using only the data of the first machine, while the
data of the second machine are used for the testing process.
'erefore, 22500× 45 data are considered for the training
process and the same number of data is also used for the
testing process.

3. Computational Model

3.1. Temporal Convolutional Networks. In this study, the
authors apply the fully convolutional neural network and the
long short-term memory (LSTM) network in a conjoined
manner for fault detection and severity classification of an
induction machine. 'is combined model is shown to be
effective in time-series classification [16]. In this section, the
authors describe the required background and the employed
structure.

Based on the neurobiology of the visual cortex, con-
volutional neural network (CNN) [17] is a neural network
model that is generally composed of multiple convolutional
layers along with fully connected layers. It may also contain
subsampling steps. 'e convolution filters along with an
appropriate pooling function can reasonably reduce the data
dimensionality delivered to the fully connected classifier
network.

In this study, the authors extract features using a tem-
poral convolutional network (TCN) in a fully convolutional
network (FCN). A TCN is a variation of CNN for the se-
quence modelling tasks [14]. 'e distinguishing character-
istics of TCNs are twofold. First, it can map an input
sequence to an output sequence of identical length. Second,
the convolutions in TCN are causal, such that no infor-
mation is exposed from future to past.

As stated by Lea et al. [14], the input to a TCN is a time-
series signal. Let Xt ∈ RF0 be the input feature vector of
length F0 in time step t where 1< t≤T. Each sequence may
have a specific T value. 'e number of time steps in each
layer l is denoted as Tl. A set of 1D filters are applied in each
convolution layer to capture the dynamics of input signals.
'e filters for each layer l are parameterized by tensor
W(l) ∈ RFl×d×Fl−1 and biases b(l) ∈ RFl , where d is the filter
duration. In the same layer, the ith entry of the unnormalized
activation 􏽢E

(l)

t ∈ R
Fl is a function of the incoming nor-

malized activation matrix E(l− 1) ∈ RFl−1×Tl−1 from the pre-
vious layer [14]:

􏽢E
(l)

i,t � f b
(l)
i + 􏽘

d

t′�1

W
(l)

i,t′,·, E
(l−1)

·,t+d−t′􏼜 􏼝⎛⎝ ⎞⎠, (2)

where f is a rectified linear unit (ReLU).
A basic convolution block consists of a convolution

layer, followed by batch normalization, followed by a rec-
tified linear unit (ReLU) activation function. For each layer,
1D convolutions capture the dynamics of lower-level fea-
tures, and pooling can aid in computing long-range tem-
poral patterns.

3.2. Long Short-Term Memory. A recurrent neural network
(RNN) [36] is derived from the feedforward neural network
and has an internal state enabling it to deal with an input
sequence with variable length. It is a deep structure capable
of detecting structures in streams of data. 'e connections
between nodes are designed to consider temporal relations
such that in each state, the output is dependent on the
outputs of the previous states. 'erefore, the network
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outcome is influenced by what it has learnt from the past. In
recent years, a main variant of RNN named long short-term
memory (LSTM) [39] has become popular in different
applications.

In a RNN, the input and the hidden states are simply
passed through a single tanh layer. Long short-termmemory
(LSTM) networks [40] improve on this simple transfor-
mation and introduce additional gates and a cell state as
follows: the forget gate (f ) controls the persistence of a value
in the cell, the input gate restrains entrance of a new value
into the cell, and the output gate (o) determines how much
effect the cell value has on the cell output.

'e hidden layer of LSTM consists of a set of recurrently
connected units. At time t, the input vector xt is fed into the
network.'e elements of each block in a layer of memory cells
are defined by the set of equation (3) [41], in which ht

l−1 shows
the previous layer (or network input) at the same step t, and
ht−1

l is the same layer at the previous step t − 1. In addition,w is
the weight parameter, and b is the bias. σ and tanh are
pointwise sigmoid (logistic) and hyperbolic tangent activations,
respectively. ʘ operator symbolizes pointwise multiplication.

g
t
l � tanh w

gx

l h
t
l−1 + w

gh

l h
t−1
l + b

g

l􏼐 􏼑,

i
t
l � σ w

ix
l h

t
l−1 + w

ih
l h

t−1
l + b

i
l􏼐 􏼑,

f
t
l � σ w

fx

l h
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l h
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f

l􏼐 􏼑,

o
t
l � σ w
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oh
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t
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t
l ⊙ i

t
l + s

t−1
l ⊙f

t
l ,

h
t
l � tanh s

t
l􏼐 􏼑⊙ o

t
l .

(3)

'e attentionalmechanism can also be applied to the LSTM
architecture (Figure 3), such that the output is selectively related
to elements in the input sequence [18]. 'is mechanism, which
is now widely used in different contexts, was initially designed
for the sequence-to-sequencemodels. It can lift the limitation of
fixed-length internal representation [42] and help improve the
network performance for sequences of longer lengths.

3.3. Network Architecture. As shown in Figure 3, the system
has two subblocks, namely, the fully convolutional block and
the LSTM block.'e time series is inserted in both blocks, with
the former receiving the input as univariate with multiple time
steps, while the latter seeing it as a multivariate time series in
one time step. 'erefore, the length of the input sequence
determines the number of time steps for the FCN block input
and number of variables for the LSTM block input. 'e di-
mension shuffle element has the responsibility of preparing the
multivariate input for the LSTM block. It is worth to note that
this transformation increases the performance of the LSTM.

As shown in Figure 4, the FCN block is composed of
temporal convolutions, which have been shown to be practical
in time-series analysis [36]. Four stacked units, each comprised
of a temporal convolutional layer, followed by batch nor-
malization, followed by the ReLU activation, construct the FCN
block. Using this setting, discriminative features can be
extracted from the input [43]. Based on 1D convolutions,
pooling, and channel-wise normalization, this structure can
hierarchically capture low- to high-level temporal information.
Global average pooling decreases the number of output pa-
rameters before producing the block output.

'e combined architecture with LSTM can boost the
performance of a sole FCN. In LSTM, intermediate acti-
vations are a function of the low-level features at the current
time step and the state at the previous time step. 'e
temporal convolutional filters, on the other hand, are a
function of raw data across a longer time period.

'e LSTM is followed by a dropout to combat overfitting.
As described earlier, the attention mechanism may be in-
troduced to the network by substituting the LSTM cells
resulting in the LSTM-FCN architecture. 'e output of the
two blocks is concatenated and fed into the softmax classifier.

4. Experiments

In this section, the authors first discuss the parameter setting of
the network, the dataset, and evaluation metrics. 'en, the
actual experimental results are presented. 'e implementation
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Figure 1: (a) Schematic of experimental setup for unbalanced winding fault and (b) experimental test bench.
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was performed using the Keras [44] library with the Tensor-
Flow [45] backend.'e authors used the Adam optimizer [46],
with initial and final learning rates of 1e− 3 and 1e− 4, re-
spectively.'e number of training epochs and initial batch size
was set to 1000 and 128, respectively. In the LSTM block, the
authors used 64 units and the dropout rate was set to 80%.
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Figure 2: Comparison between healthy and faulty stator current spectrums at different fault severities and slips, ((a), (b)) spectral analysis at
s� 0.04 and different fault severities, (c) comparison between fault index ((1−2s)fs) in different slips and fault severities, (d) spectrum of
stator current in healthy condition at s� 0.04, (e) stator current at healthy condition at s� 0.04, and (f) stator current at faulty condition at
s� 0.04.

Table 1: Classification of collected data from stator current sensor.

Slip/severity (Runb) (p.u.) 0 0.029 0.059 0.088
0.053 (1420 rpm) A1 A4 A7 A10
0.04 (1440 rpm) A2 A5 A8 A11
0.027 (1460 rpm) A3 A6 A9 A12
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4.1. Evaluation Metrics. 'e metrics used for evaluating the
performance of the proposed approach are described in this
section. 'e accuracy measure indicates the percent of cor-
rectly classified instances. 'e precision and recall measures
are simultaneously used to measure classification perfor-
mance [47]. Precision denotes the percent of relevant cases
among the retrieved ones, while recall refers to the fraction of
all relevant cases retrieved by the algorithm. Higher values of
bothmeasures (ideally equal to one) demonstrate the superior
performance of the classifier. 'erefore, if the precision and
recall values of one class are both higher high, the classifier has
a desirable efficiency in detecting that class [47].

Precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(4)

In a two-class scenario (positive and negative), the
number of cases where the algorithm outcome and the actual
class are identical and positive is called true positive (TP). If
the actual class is negative, it is false positive (FP). Con-
versely, true negative (TN) is the number of cases where the
algorithm outcome is correctly negative. Finally, false
negative (FN) refers to the actual positive cases predicted to
be negative.

Another popular performance measurement is F1 score.
'e value of F1 score ranges from zero to one [48] and offers

a combined measure based on the individual precision and
recall values.

F1 − score �
2 × precision × recall
precision + recall

. (5)

A F1 score value of 1 indicates that both precision and
recall are perfectly equal to 1. A high F1 score indicates
simultaneous efficiency in terms of both precision and recall.

'e AUC-ROC curve provides another means of eval-
uating the performance of a classifier. 'e AUC-ROC curve
demonstrates the capability of the model in discriminating
the classes. In the ROC, true-positive rate (TPR) or
sensitivity, which is similar to recall, is plotted against the
false-positive rate (FPR) or 1-specificity. Sensitivity and
specificity, which are inversely proportional, are two mea-
sures used together to measure the predictive performance
of a classification model [49].

Sensitivity �
TP

TP + FN
,

specificity �
FP

FP + TN
,

FPR � 1 − specificity �
FP

FP + TN
.

(6)

To plot the ROC curve, the discrimination threshold of
the classifier is varied. With smaller threshold values, more
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Figure 3: LSTM-FCN architecture.

Global Pooling128 Conv1D
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Figure 4: FCN structure of the LSTM-FCN architecture.

6 International Transactions on Electrical Energy Systems



positive predictions are produced and sensitivity increases.
Larger threshold values increase the number of negative
predictions, which yields larger specificity values. As men-
tioned, FPR is 1-specificity. So, when TPR increases, FPR
also increases and vice versa.

4.2. Results. To assess the performance of the detection
model, the authors trained the two LSTM-FCN andALSTM-
FCN using the data of engine 1 and computed the evaluation
metrics per class, based on the test data from machine 2. 'e
precision and recall of LSTM-FCN and ALSTM-FCN are
presented in Tables 2 and 3, respectively. As the problem is a
multiclass task, the authors have used the one vs all approach
to compute the precision and recall values. As observed, the
classification performance is high for nearly all classes in-
volving healthy and faulty operations. 'e average accuracy
is above 98% and 97% for the two architectures, respectively.

In Figure 5, the precision, recall, and F1 scores are shown
for the healthy and fault categories averaged over different
slip values. Both networks are competing in detecting the
healthy cases according to different metrics. 'e ALSTM-
FCN is superior or competing in the faulty cases from the
precision perspective, meaning that it has relatively higher
true positives and/or less false positives in these classes.
However, according to recall, LSTM-ALSTM majorly out-
performs the ALSTM-FCN for lower fault severities (i.e.,
Runb (p.u.) equal to 0.003 and 0.031), meaning that it has
relatively higher true positives and/or less false negatives in
these classes. 'e ALSTM network has an increasing per-
formance when fault severity increases. Combining the two
measures, ALSTM-FCN and LSTM-FCN are competing in
healthy conditions and higher fault severities, but LSTM-
FCN is superior in lower fault severities.

In this study, the authors have a multiclass (12 classes)
problem. To extend the ROC curve to multiclass classifi-
cation, the authors use the one vs all method. Also, as the
number of classes is large, instead of plotting ROC for each
class, the authors plot the micro- and macroaverages to
check the performance of LSTM-FCN and ALSTM-FCN
(Figures 6 and 7).

Macro-averaging computes the TPR and FPR metrics
independently for each class and takes the average by giving
equal weight to all classes [50]. In the microaverage method,
the individual true-positive, false-positive, and false-negative
values are computed for each class and aggregated to get the
statistics [50]. In a multiclass classification, microaverage is
preferable if class imbalance is suspected.

As shown in Figures 6 and 7, the ROC curve is plotted for
both LSTM-FCN and ALSTM-FCN. As observed, the ROC
curve is close to an ideal showing that false positives and false
negatives of the classifier are very low. Table 4 shows the area
of micro-average ROC curve for both networks. As it can be
seen, the AUC in Figure 6 is slightly greater than that of
Figure 7, which indicates that LSTM-FCN has better per-
formance than the ALSTM-FCN.

'e authors used t-distributed stochastic neighbor
embedding (t-SNE) to visually show the behavior of the
LSTM-FCN for classification. 'e t-SNE algorithm

provides an effective method to visualize a complex high-
dimensional dataset [50]. It can successfully uncover
hidden structures in the data. Furthermore, transposing
similarities between data points to joint probabilities, it
attempts to minimize the Kullback–Leibler divergence
between the joint probabilities of the low-dimensional
embedding and the high-dimensional data. In other words,
the t-SNE provides a simplified image of the layout and
structure of high-dimensional data in two- or three-
dimensional frames. Figure 8 shows the t-SNE for the LTSM-
FCN. As observed, the network is successful in discriminating
data of different classes into distinguished groups.

Also, the authors used confusion matrix to visually show
the behavior of the LSTM-FCN for classification (Figure 9).
'is confusion matrix summarizes the classification per-
formance of LSTM-FCN classifier with respect to some test
data, which are prepared from machine 2.

Figure 10 demonstrated the performance of the pro-
posed detection model against other architectures. 'e
authors compare five models (LSTM-FCN, ALSTM-FCN, 1-
layer LSTM, support vector machine (SVM), and hierar-
chical LSTM [51]) with first training using engine 1 data and
then report the metrics on engine 2 data. Similar to our
model, the recent hierarchical LSTM [51] does not use

Table 2: Accuracy, precision, recall, and F1 score measurement of
12 classes for the LSTM-FCN.

Runb (p.u.) Class Precision Recall F1 score

Healthy 0
A1 1.00 1.00 1.00
A2 0.98 1.00 0.99
A3 098 1.00 0.99

Faulty

0.003
A4 1.00 1.00 1.00
A5 0.99 0.98 0.98
A6 0.97 0.99 0.98

0.031
A7 1.00 1.00 1.00
A8 1.00 0.98 0.99
A9 0.96 0.98 0.99

0.093
A10 1.00 1.00 1.00
A11 1.00 1.00 1.00
A12 1.00 0.95 0.97

Accuracy 98.92%

Table 3: Accuracy, precision, recall, and F1 score measurement of
12 classes for the ALSTM-FCN.

Runb (p.u.) Class Precision Recall F1 score

Healthy 0
A1 1.00 1.00 1.00
A2 0.97 1.00 0.99
A3 0.97 1.00 0.99

Faulty

0.003
A4 1.00 1.00 1.00
A5 1.00 1.00 1.00
A6 1.00 0.59 0.74

0.031
A7 1.00 0.85 0.92
A8 1.00 1.00 0.94
A9 0.99 1.00 1.00

0.093
A10 1.00 1.00 1.00
A11 1.00 1.00 1.00
A12 0.99 0.96 0.98

Accuracy 97.83%
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preprocessing operations or manual feature extraction. It
relies on the memorize forget mechanism of LSTM to extract
features inherent in raw temporal signals hierarchically by
stacking LSTMs. SVM is a prevalent pattern recognition

algorithm used in rotating machinery fault diagnostic issues
[52, 53].

As observed, both LSTM-FCN and ALSTM-FCN
achieve higher accuracy values compared with the sole
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Figure 5: Average (a) precision, (b) recall, and (c) F1 score measurements of healthy and different fault categories for LSTM/ALSTM-FCN.
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Figure 6: ROC curve for multiclass (LSTM-FCN).

8 International Transactions on Electrical Energy Systems



ROC Curve for Multi-Class (ALSTM-FCN)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.1 0.4 0.5 0.70.3 0.90.2 0.6 0.8
False Positive Rate

micro-average ROC curve
macro-average ROC curve

Figure 7: ROC curve for multiclass (ALSTM-FCN).
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Table 4: Area under curve (AUC) of microaverage method.

LSTM-FCN ALSTM-FCN
0.9995 0.9993
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LSTM model, with LSTM-FCN yielding more than 98%
accuracy. 'e proposed detection model also largely out-
performs SVM and hierarchical LSTM models. 'e results

show that the model is capable of extracting discriminative
features from the raw temporal signal, detecting the fault,
and classifying its severity with high accuracy.
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Figure 8: Feature visualization via t-SNE for the test dataset: t-SNE for ((b), (c)) the LSTM structure of the ALSTM-FCN architecture,
((d), (e)) the FCN structure, and (f) the softmax layer. (a) Raw signal. (b) LSTM layer. (c) Dropout layer. (d) FCN layer. (e) Concatenate
layer. (f ) Softmax layer.
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5. Conclusion

In this study, a new approach for the detection and clas-
sification of induction machine unbalance fault in different
load levels is presented. In this regard, a LSTM recurrent
neural network method with temporal convolution is ap-
plied for fault detection and classification of its severity for
unbalanced winding fault (UWF) detection in the rotor
windings of WRIG in different load levels by means of stator
current signature. In comparison with traditional fault de-
tection approaches, the proposed method minimizes the
need for expert supervision. 'e proposed method does not
need a preprocessing phase and directly uses time series of
electrical signals for fault detection and classifications. 'e
results show that the faulty and healthy cases in different
load levels can be separated with a high accuracy (98.92%).
'e proposed method is compared with five different recent
methods (LSTM-FCN, ALSTM-FCN, 1-layer LSTM, sup-
port vector machine (SVM), and hierarchical LSTM) to
show the effectiveness of the proposed method.'e accuracy
values of some individual classes in the proposed approach
may be further improved. To this end, one can use several
preprocessing steps to extract more complicated features, or
use the extracted features from the final layers of the deep
network in another classifier. 'ese are left for future work.
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